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Abstract-The investigations deal with the influence of thermal radiation on the propagation of 
thermoconvective waves in a fluid heated from below. The radiation field is described by means of the 
differential approximation. The dispersion equation that is derived for horizontally propagating plane 
harmonic waves has three different solutions: 

In addition to the two modes of thermoconvective waves one also obtains one wave of the radiation- 
induced type whereby interesting interactions are observed. If the radiation field leads to a strongly 
nonlinear temperature distribution in the undisturbed basic state the propagation of the weakly damped 

thermoconvective waves is described in terms of a ray theory. 

NOMENCLATURE 

Bouguer-number ; 
thickness of the layer; 
specific heat capacity at constant pressure; 
specific internal energy; 
parameter describing the relative 

importance of radiation, cf. equation (14); 
gravitational acceleration, g = (0, -9); 
radiation-conduction parameter, cf. 
equations (13b) or (15); 
spectral radiative intensity; 
mean radiative intensity, cf. equation (6); 
dimensionless parameter, cf. 
equation (28b); 
complex wave number, k = k, + ik,; 
characteristic length in x-direction; 

buoyancy frequency, cf. equation (18b); 
phase of harmonic waves, cf. equation (31); 
hydrodynamic stress tensor; 
Prandtl-number ; 

amplitude of external radiation flux, cf. 
equation (26); 
radiative heat flux; 
specific entropy ; 
temperature ; 
time ; 
velocity component in y-direction ; 
vector of flow velocity ; 
horizontal coordinate; 
vertical coordinate. 

reek symbols 

u, radiative absorption coefficient; 

B? thermal expansivity ; 

YO? stratification parameter, cf. equation (12); 

E, frequency parameter, cf. equation (18b); 

8, amplitude of temperature perturbation ; 
e cl, amplitude of oscillating wall temperature; 

. tPresent address: Escher Wyss AG, CH-8023, Ziirich, 
Switzerland. 

It has been shown [2,3] that the buoyancy forces 
to produce thermoconvective waves must be at least 
of such a magnitude that they already give rise to 
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inclination angles of ray direction and 
phase normal, respectively ; 
thermal diffusivity ; 
thermal conductivity; 
viscosity ; 
bulk viscosity ; 
kinematic viscosity ; 
ray coordinate; 
density ; 
Stefan-Boltzmann constant ; 
optical thickness, cf. equation (28b); 
eikonal, cf. equations (30), (31); 
angular frequency. 

Subscripts, superscripts 

0, 

* 

x>.v,t, 

at dimensionless quantities: first order 
expansion ; at non-dimensionless quantities : 
undisturbed state; 
perturbation quantity; 
dimensionless quantity ; 
reference quantity; 
partial derivatives with respect to x,y,t, 
respectively. 

I. INTRODUCTION 

IT WAS shown at first by Luikov and Berkovsky [l] 
that in a stratified fluid in the gravity field the 
properties of coupled thermal and shearing waves 
may alter completely according to the influence of 
buoyancy effects. One has to deal with a new type of 
waves, so called thermoconvective waves. Most 
significant is the fact that the damping of the first 
mode of thermoconvective waves may be orders of 
magnitude smaller than that of classical thermal 
and shearing waves, whereas the simultaneously 
propagating second mode of thermoconvective waves 
is characterized by larger values of the damping. 
A detailed description of the phenomenon of 
thermoconvective waves is given in [3]. 



1514 H. KECK 

x 
- drectlon of 

TO 

wave propagation 

// “VW ///W~///~~~/~ I// / , -4% 

FIG. 1. Geometry of the problem: T,(J) temperature 
distribution in the undisturbed state; g vector of gravi- 

tational acceleration. 

instability in an unbounded stratified fluid. At a 
large adverse temperature gradient as is necessary 

for thermoconvective waves, stability can only be 
guaranteed in a horizontal layer of finite thickness 
(Fig. 1) under the condition of a subcritical Rayleigh- 

number. Hence a treatment of thermoconvective 
waves in the form of one-dimensional plane waves as 
was performed in [l] seems to be inconsistent. Thl: 

influence of bounding horizontal walls on the 
propagation of thermoconvective waves has there- 
fore been analysed in [3]. It has been shown that 
under the condition of a large, yet subcritical 
Rayleigh-number (Ru x 1 with Ra < Ra,,J the one- 
dimensional model, though disregarding the ampli- 
tude profile over the cross-section of the layer, 
actually yields a first approximation for the wave 
number. This result will also be most useful in the 
present analysis that is concerned with the pro- 
pagation of thermoconvective waves under the 
influence of a radiation field. 

Problems of radiation-convection interaction have 
attracted much interest during the last years, e.g 
[4,5] ; in these problems the relative importance of 
radiation may be surprisingly large already at 
moderate temperatures of about 500 K, cf. Section 2. 
On the other hand, the study of the influence of 
radiation on classical thermal waves [6] as well as 
on sound waves [7] led to the discovery of the 
phenomenon of radiation-induced waves. In con- 
nection with sound waves radiation-induced waves 
have already been verified experimentally, cf. [8]. 

The previous studies [6] about the simultaneous 
propagation of a thermal wave and a radiation- 
induced wave have shown remarkable and unusual 
results; e.g. at certain values of the parameters the 
two solutions of the characteristic equation may 
coincide forming a double-root or may exchange 
their physical meaning in the course of the variation 
of parameters. In the case of thermoconvective waves 
in a heat-conducting and radiating medium we have 
now to study the interaction of a radiation-induced 
wave not just with another single wave but with a 
system of two coupled waves, and we shall be able to 
make interesting comparisons between the behaviour 
of ordinary thermal waves and thermoconvective 

waves. 
Radiation does not only influence the propagation 

of thermoconvective waves by means of the in- 
teraction with a radiation-induced wave but at the 

same time also by way of a nonlinear temperature 
distribution in the undisturbed basic state, see Fig. 1. 
In cases where a strong nonlinearity of the tempera- 
ture profile does not allow a formulation in terms of 
plane waves the methods of the ray theory ~111 be 
applied. In this context it has first to be shown that 
also under the influence of radiation the wave length 
of the weakly damped thermoconvective wave is 
small compared to distances over which the tempera- 
ture gradient changes considerably. 

A more detailed version of the analysis that will be 
outlined below can be found in the author’s Ph.D. 

thesis [2]. 

2. GOVERNING EQUATIONS 

The basic hydrodynamic equations representing 
the conservation of mass, momentum and energy are 
adopted in the following form: 

DP -+pdivw = 0, 
Dt 

PE=divP+yg, 

(1) 

Dt? 
p - = P: grad w+div(igrad T)-divq,. 

Dt 
(3) 

w is the vector of the flow velocity with the 

components u,c in x,y-direction. 

D r: 
PZZ 
Dt 

cSt+wgrad 

denotes the substantial derivative with respect to 
time; p is the density, T the absolute temperature, e 
the specific internal energy, g the vector of gravi- 
tational acceleration, P the hydrodynamic stress 
tensor, 1. the thermal conductivity. q, is the radiative 
heat flux that couples the hydrodynamic and the 
radiative field. Radiation stresses and the radiant 
energy density are neglected, therefore excluding 
extremely low densities together with extremely high 
temperatures from our considerations, cf. e.g. [9]. 

If we supplemented the hydrodynamic equations 
(l)-(3) by the exact equations of the radiation field 
in terms of the transport theory we would have to 
deal with a system of integro-differential equations. It 
can be reduced to a set of differential equations by 
means of the differential approximation [9] and the 
assumption of an appropriate mean value c( of the 
frequency-dependent absorption coefficient. Thus in 
addition to the equations (l)-(3) we use the 
following approximate equations of the radiation 
field : 

div qR = 4a[aT4 - 7r1,], (4) 

grad I, = - g q,. 

Thereby the quantity 

I, dvdR (6) 
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is the mean of the spectral intensity I, with respect to 

the radiation frequency Y and the space angle Q, and 
a is the Stefan~Boltzmann constant. 

Tile use of one of the more refmed versions of the 
differential approximations, as discussed for example 
in [4], is delayed until Section 3. 

The nonlinear differential equations (l)-(5) are 
now linearized by assuming that there are only small 
perturbations of the stratified equilibrium state 

ti = $o(V)++‘(“, i’, t), (7) 

here $ stands for any of the dependent variables, the 
subscript 0 indicates quantities in the undisturbed 
basic state and the superscript ’ denotes the 
perturbation quantities. 

Furthermore we adopt the Boussinesq- 
approximation, cf. e.g. [lo], neglecting perturbations 
of density except as the buoyancy term in the 
momentum equation is concerned. It has been shown 
previously [2,3] that this approximation is appro- 
priate to describe thermoconvective waves in a liquid 
as well as in a gas, as long as longitudinal 
oscillations are not taken into consideration. 

The approximations introduced above finally lead 
to the following set of linear differential equations: 

div w’ = 0, (8) 

rotw’+~~~~~ = 0, (9) 

1 
- div qk, (10) 
POC,,, 

(A-3cr”)divqX = lC~roT,*~dT’, (11) 

A denotes the Laplace operator and T: the 
temperature in the undisturbed state at the reference 
plane y = 0, cf. Fig. 1; 0 is the coefficient of 
volumetric expansion, 1’ the kinematic viscosity, K the 
thermal diffusivity, c,, the specific heat capacity. As 
all these coefficients are taken in the undisturbed, but 
stratified basic state, we assume that the relative 
changes of these coefficients due to the temperature 
distribution in y-direction are so small that we may 
use appropriate mean values in our calculation. The 
infIuence of a gradient of the viscosity, probably the 
most important deviation from the assumption of 
constant coefficients, has been considered in [2] 
showing no striking effect on the qualitative be- 
haviour of thermoconvective waves. 

As far as the coefficient ;J~ in equation (10) is 
concerned, a careful investigation is in order [3]. If 
the compressibility of the fluid in the stratified 
equilibriunl state is not neglected y0 takes the form 

dT, + YPO To* To dso 
;” = dy 

-=----. 
cP,, cp,, dy 

(12) 

As y. < 0 is a necessary condition for thermoconvec- 
tive waves [l], not only a negative temperature 
gradient but rather a negative entropy gradient 
ds,jdy is required. This means that the stability 
criterion in an unbounded stratified fluid in the 

gravity field is not satisfied. Thermoconvective waves 
can therefore propagate only in a horizontal layer of 

finite thickness. As long as the Rayleigb-num~r (17) 
in such a layer remains subcritical, stability is 

guaranteed also at the large adverse temperature 
gradients that are desired to achieve a distinct weak 
damping of the thermoconvective waves. The ab- 
solute value of the negative temperature gradient, 
idT,/dy/, will then typically be large compared to the 
isentropic gradient, g~oT,*/c,,, so that for the 
purpose of the present investigation we may regard 
the coefficient yo, cf. (12), as approximately equal to 
the temperature gradient dT,/dy. 

Contrary to all the other coefficients in the system 
(St-_(ll) we shall in general not be able to regard y. 
as a constant, because a nonlinear temperature 
distribution in the basic state is just one of the 
especially important radiative effects, cf. Fig. 1. 
Before we can go into further details we have to 
define the parameters that characterize the radiation 
field. This is achieved by rewriting equation (I 1) in 
dimensionless form 

with 

(A-Bu’)divqX = H3u2&‘T, 

T=-TI_ 
T; ’ 

divqk = i”,: divqk, 
1 o* 

(l3a) 

K= LZA, (1%) 

Bu = &Lx, 

16aT,*3 KK 

H=?Z-=-. K 

The Bouguer-number Bu measures the optical 
thickness on a distance L, that will later on be set 
equal to the wave length of the weakly damped 
thermoconvective wave, cf. equation (18b). 

The parameter H relates characteristic quantities 
of the radiation field to the conductivity A. In the 
limit BU -+ co, equation (13a) shows that H may be 

regarded as the ratio between a fictitious radiant 
diffusivity for infinitely large optical thickness, K~, 
and the actual thermal diffusivity K. 

In the limit Bu -0. at a fixed value of the 
parameter H, the influence of radiation on the flow 
field vanishes .altogether. A parameter to characterize 
the relative importance of radiation at arbitrary values 
of the Bouguer-number is defined by 

HBu2 
GZ---- 

l+Bu2 ’ (14) 

G is equivaient to the parameter 

I-= 
BU 

Bo(l+Bu’)’ 

as it was introduced in [9], if we interpret the 
quantity 

(ffBu)-‘=d%&_ 
16 oT$~’ 

as a Boltzmann-number Bo. 
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If in the limit Bu --+ 0 the parameter G instead of H 
is now held constant, then equation (13a) describes the 
limiting case of so-called dominating emission [2,9]. 

Here the opportunity will be taken to introduce 
an improved differential approximation: If the 
definitions of BU and H in (13b) are replaced by 

Bu=&L,, 

16aTz3 
HZ------ 

31a, ’ 

(15) 

where cl,, denotes the Planck mean and tlR the 
Rosseland mean of the absorption coefficient, cf. e.g. 
[ll], then equation (13a) can be regarded as being 
formulated according to Traugott’s modified differ- 
ential approximation [ 12,4]. This approximation 
yields, in the limits Bu -0 and Bu -+ co, the same 
equations as would follow from the exact integro- 
differential-~uations in these limits. Hence this 
method already provides a considerable increase of 
accuracy compared to the simple grey-gas approxi- 
mation. A further discussion whether it would be 
adequate in our problem to use the linear Planck 
mean Q.,~ [13] instead of ap lies beyond the scope of 
this paper. More emphasis is laid on the question: 
at what temperatures already significant radiative 
effects can be expected. In Table 1 some typical data 
for different gases have been listed to show that in 
the considered problem radiation can attain the same 
importance as conduction even at remarkably low 
temperatures. Very high temperatures are only 
required in the case of air. (The necessary gas- 
properties were taken from [14,15].) 

Before solving now the system of equations 
(8)-(11) we must pay attention to the fact that the 
temperature gradient in the basic state is not 

constant. The wellknown solution for the nonlinear 
temperature profile in a conducting and radiating 
fluid layer, cf. e.g. [16], will not be reproduced here; 
we only want to discuss the main conclusions that 
are essential for our further calculations. 

Obviously the deviation from a linear temperature 
distribution cannot be strong if the relative impor- 
tance of radiation is only small, i.e. G CC 1. On the 
other hand, if the optical thickness of the layer is 
large, ab >> 1, then the temperature gradient will be 
constant in the main part of the layer and the non- 
linearity of the profile will manifest itself only in 
narrow regions near the walls of the layer. This 
means that in the cases 

G CC 1 with arbitrary values of the optical thick- 
ness (ab); and 
ctb >> 1 with arbitrary values of the parameter G, 

the temperature gradient and hence the coefficient y0 
in equation (10) can be regarded as constant. Then 
the solution of the system (S)-(11) may be found in 
the form of horizontally propagating waves with 
plane surfaces of constant phase. 

In all the other cases the influence of radiation 
leads to typically S-shaped temperature profiles, cf. 
Fig. 1. The appropriate method to solve the 
equations (8)-(11) with a variable coefficient y0 will 
be discussed in Section 4. 

3. INTERA~ION BETWEEN THERM~ONVE~IVE 
WAVFS AND RADIATION-INDUCED WAVES 

We consider now the case where all the coefficients 
of the equations (8)-(11) are constant and assume 
the solutions to be of the form 

Table 1. A comparison of some typical data to show the relative 
importance of radiation 

CO, 500 K 10.4 0.18 36.8 1.15 
H,O, 500 K 56.8 0.98 6.58 3.22 
CO,, 500 K 162.5 2.8 1.73 1.53 
CO,, 2000 K 14.4 0.25 502.5 29.5 
Air, 2000 K - 1.3 lo+ 5.5~10-‘11 

*Geometrical mean between Planck’s and Rosseland’s mean of the 
absorption coefficient; also: optical thickness of a layer of depth b = 1 tn. 

tBu = $&&Lx with L, = IO-*III, i.e. ~uguer-number at a typical 
value of the wave length. 

fH = 16c~T,*~/3tZa,, ratio between the fictitious radiant diffusivity of 
optically thick radiation and the actual thermal diffusivity. 

$G = HBu*/(I +Bu’), characteristic parameter for the relative impor- 
tance of the radiative energy flux. 

)IAt 2000K the value of c+ of air is still very small: clp = 7.4. 10-8m-’ ; 
at the correspondingly small optical thickness the quantities CI~ and H are 
meaningless so that the following formulations have been used: 

G= 
16aT,C3 
- c+L$ with L, = lo-* tn. 

A 
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The amplitude Y of any of the perturbation 
quantities t,Y and the angular frequency o are 
determined by the boundary conditions at the wall 
x = 0; the complex wave number k has to be 
calculated as a function of w and the other relevant 
parameters. 

Due to the horizontal walls bounding the fluid we 
actually would have to solve the problem of a two- 
dimensional wave propagation with an amplitude 
profile Y(y) over the cross-section of the layer. But in 
[3] it has been shown that at large Rayleigh- 
numbers 

Ra = SBolYol~4 >> 1 

KV 
(17) 

the inRuence of the horizontal walls on the wave 
number is only of the order of O(RU-“‘~). This 
means that for the purpose of a first order 
calculation with respect to the wave number k we 
may neglect the horizontal walls and thus the 
influence of the amplitude profile W(y) on the wave 
number. If we introduce wave solutions of the form 
(16) with constant Y into the equations (8)-(11) we 
obtain a characteristic equation (dispersion relation) 
of the following dimensionIess form: 

P 

1 = 0, 

with 
(18a) 

H and Bu are given according to (136) or (1.5); To 
denotes the ratio between the actual temperature 
gradient yo, and the temperature gradient without 
radiative effects $. According to the assumptions of 
this section y. is constant but not necessarily equal 
to unity. Both y. and yz must be negative for 
thermoconvective waves to exist, cf. [3]. This had to 
be taken into account when defining the character- 
istic length in x-direction, L,, and the parameter N 
that corresponds to the buoyancy frequency or 
Brunt-VHisald frequency, cf. Eli’, 181. The parameter 
s, the ratio between the angular frequency o and the 
buoyancy frequency N, is the main parameter to 
characterize one-dimensional thermoconvective waves 
in a purely conducting medium, cf. [3]. 

The dispersion relation for the case of negligible 
radiation follows from (18) in either of the limits 
Bu --, 0 or H -+ 0, and at To = 1. If in addition the 
limit E -+ 0 is considered one obtains 

P-1 = 0, (19) 
with the two roots 

(I) K= +1, 

(II) f;= fi, (20) 

corresponding to the weakly damped and strongly 
damped mode of thermoconvective waves respec- 
tively. Comparing now (20) (18b) and (17) we can 
derive 

(21) 
c-o \ b / JRa 

with k, being the real wave number (2~~wave-length) 
of the weakly damped mode of the thermoconv~tive 
waves. This relationship between the wave-Iength of 
thermoconvective waves and the Rayleigh-number 
has been the basis of the perturbation analysis in [3] 
and will again be of importance in Section 5. 

Due to the additional radiant energy transport the 
dispersion relation is now no longer a biquadratic, 
but a bicubic algebraic equation, cf. (18a), with three 
different solutions for the wave number k7 In 
addition to the two thermoconvective waves we 
obtain a so-called radiation-induced wave. As was 
already mentioned in the introduction radiation- 
induced waves have so far been studied in con- 
nection with a sound wave [7] and a thermal wave 
[6]. In both cases an interaction between a single 
classical wave and a single radiation-induced wave 
was observed. In analogy one might have expected 
now that together with two thermoconvective waves 
also two waves of the radiation-induced type would 
appear. But already equation (18a) shows that there 
exists no radiant counterpart for each of the two 
thermoconvective waves but that again only one 
single radiation-induced wave is obtained. 

To achieve a better understanding of the phenom- 
enon let us consider the limit H +O in equation 
(f8a) which leads to 

(R+&?) 
ii 

I - 
- ir: + ---= k2 

JPr 1 

x (-ic+JEk2)-~o = 0. (22) I 
The second expression between brackets corresponds 
to thermoconvective waves in a merely conducting 
medium and the first expression 

P2+Bu2 = 0, (23) 

can be associated with the radiation-induced wave, 
This degeneration of the wave number to only an 
imaginary part can also be followed directly from 
equation (13a) where in the limit H + 0 the left hand 
side becomes equal to zero with equation (23) as the 
characteristic equation. We can conclude that in a 
radiating medium according to equation (13a) or 
(11) the temperature perturbations of any arbitrary 
wave system will stimulate one and only one 
radiation-induced wave. Furthermore, only by 
means of the coupling with other waves a radiation- 
induced wave with finite wave length and phase 
velocity is possible. The properties of the radiation- 
induced wave depend therefore very much on the 
special type of wave it is coupled with. Nevertheless 
in all cases studied so far (sound waves, thermal waves, 
thermoconvective waves) the wave numbers of the 
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different kinds of radiation-induced waves 
approximate 

k2 = -3$, 

in the limit of weak radiation. 

(24) 

Besides it should be mentioned that in the limit of 
infinitely large optical thickness, Bu -+ x,, equation 
(18a) reduces to a fourth order dispersion relation of 
the thermoconvective type except for the fact that 
then the sum of the fictitious radiative diffusivity K~ 
and the thermal diffusivity K appears [Z]. Again the 
effects of optically thick radiation are equivalent to 
an enhancement of thermal conductivity. 

Now the actual numerical solutions of equation 
(18a) will be discussed. (EJ- ‘, the reciprocal real 
part of the wave number (characterizing the wave 
length) and &, the imaginary part of E (correspond- 
ing to the damping) have been calculated as 
functions of Bu’, the square of the Bouguer-number, 
with E and H as parameters, cf. the definitions (13b) 
and (18b) respectively. 

Figure 2 shows the solutions at E = 0.1 and with 
the radiation-conduction parameter H = 0.01. For 
simplicity we choose Pr = 1 and *&, = 1 in the 
following: let us consider at first the damping 
constant C& at small values of Bu’ ; we easily identify 
the solution (I) with Ei = O(e) as the weakiy damped 
mode of thermoconv~t~ve waves, the solution (II) 
with ki = O(1) as the strongly damped mode of 
thermoconvective waves and the solution (III) with 
ki = O(Bu) as the radiation-induced wave, cf. equa- 
tion (23). If the parameter H were chosen exactly 
equal to zero (H = 0.0) the three solutions would 
continue in the form of straight lines into the region of 
~ouguer-num~rs Bu > 1. At small but finite values 
of H, as in Fig. 2, we observe however that the 
solutions (II) and (III) exchange their physical 
meanings. If the Bouguer-number is increased con- 
tinuously from values Bu < 1 to Bu > 1, then the 
solution of the formerly strongly damned thermo- 
convective wave (II) continues as the solution of the 
radiation-induced wave and vice versa. The notation 
is understood according to Table 2. 

The analogous changing of parts between solution 
(II) and (III) occurs for the wave length (see the 
diagram at the top of Fig. 2). In the limit N -+ 0 
(infinitely weak radiation) the solution k;’ of the 
radiation-induced wave goes to infinity, whereas the 

lo5 

‘I.$ 
IO3 

10 

r 

I&- 

1iY3 m-2 d 1 10 lo2 lo3 
2 Bu - 

FIG. 2. Reciprocal real wave number {EJ-’ and damping ki 
for the~oco~v~tive waves and a radiation induced wave, 
notation according to Table 2, with the frequency 
parameter c = 0.1 and the radiation-conduction parameter 

H = 0.01 (weak radiation). 

weakly and strongly damped thermoconvective 
waves adopt the values 6’ = 1 and e’ = O(E-‘) 
respectively. 

Quite a similar exchange of roles between two 
solutions has already been observed in the case of 
interacting thermal and radiation-induced waves [6]. 
There, the phenomenon is limited to values of the 

radiation-conduction parameter H > 1; at H = 1 a 
singuIarity appears due to the fact that the two 
solutions of the complex wave number coincide and 
form a double root of the characteristic equation. As 
thermoconvective waves are concerned the an- 
alogous singularity is transferred to the limit H = 0 at 
E -+ 0. Increasing the parameter H from values H c 1 
until H >> 1 one obtains a continuous transition in 
the shape of the solutions from the type of Fig. 2 to 
the type H >> i of Fig. 3. We notice that the 

Table 2 

Solution 
No. Bu< I 

~...I “_~.--- 

I 
weakly damped mode of 
thermoconvective waves 

II 
strongly damped mode of 
thermoconvective waves 

Bu> 1 
._.” 

weakly damped mode of 
thermoconvective waves 

radiation-induced wave 

III 
radiation-endued wave strongly damped mode of 

thermoconvective waves 
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*I lo5 

‘i; 
103 

10 

1 i3 1o-2 10-l 1 10 lo2 lo3 
2 

BU - 

i 

10 

G-’ 
10-' 

1o-2 
1K3 liF2 lo-7 1 2 10 lo2 lo3 

Bu - 

FIG. 3. Reciprocal real wave number ri(,)- ” and damping 
E at E = 0.1 and H = 100 (strong radiation). 

increasing relative importance of radiation influences 
mainly the solutions II and III whereas solution I, 
the weakly damped mode of thermoconvective 
waves, is only slightly modified even by strong 
radiation. This interesting result will be of impor- 
tance in the analysis of the next section. 

After the study of the wave numbers we have now 
to find out what relative magnitudes the ampii- 
tudes of the three simultaneously propagating waves 
will be. We seek those amplitudes that are induced 
at x = 0 according to two different boundary 
conditions. 

(a) The wall x = 0 is impe~eable with respect to 
radiation and its temperature changes according to a 
harmonic law. We further assume that the wall does 
not oscillate in either direction so that the sum of the 
velocity perturbations vanishes at x = 0. (At x > 0 
the temperature perturbations induce also vertical 
translatorical oscillations v’ by means of the buoy- 
ancy mechanism contained in thermoconvective 
waves.) The corresponding boundary conditions can 
be formulate as follows: 

T’ = Bee-‘“’ 
a‘ 7.z 0 

1 

in x = 0. (25) 
qk = 0 

(b) Secondly we consider waves that are induced 
by an external radiation flux q&) that changes 
periodically with time. In analogy to [6] we assume 
that the Auid where the waves propagate is adjacent 
to a radiatively transparent and non-conducting 

medium. Under these assumptions the boundary 
conditions can be written as 

T; = 0 
v' = 0 

qk = qe(t) = Q. e-‘w’ I 

in x = 0, (26) 

The three equations for the amplitudes 0, of the two 
thermoconvective waves and the radiation-induce 
wave that follow from the boundary conditions (25) 
or (26) together with the equations (8))(il) and (16) 
are written down in full length in [2] but are omitted 
here. We only want to present the numerical results 
for a conductton-radiation parameter H = 1. Further 
results for H = 0.1 (weak radiation) and H = IO 
(strong radiation) can be found in [2]. 

Figure 4 shows the absolute values (vector sum of 
real and imaginary part) of the temperature ampli- 
tudes according to the boundary conditions (25) of 
case (a). The solutions lDjl are obtained as functions 
of the wave numbers kj, the solutions of the 
dispersion relation (lxa), so that once again an 
exchange of roles between the solutions II and III, cf. 

1 

1 

gij 
1tF2 

1tx4 

1P 

1cF3 10L2 10-l 1 10 102 lo3 
2 

80 - 

FIG. 4. Temperature amplitudes of thermoconvective waves 
and a radiation-induced wave according to a periodically 
changing wall temperature, boundary conditions (25), with 

Bj = ~j~~~ (j = I, II. III), and at E = 0.1 and H = I. 

Table 2, can be observed. The amplitude 101 of the 
radiation-induced wave is generally smaller than the 
amplitudes of the thermoconvective waves, except at 
Bu = O(1) where the three amplitudes are of the 
same order of magnitude. Note, however, that this 
comparison concerns the maxima of the wave 
amplitudes that are in fact only present immediately 
at the wall x = 0; to quantify the disturbances at a 
certain distance x from the vertical wall one has to 
take into account also the different damping con- 
stants of the three waves, cf. Figs. 2 and 3, and [2]. 

In Fig. 5 the solutions for the temperature 
amplitudes induced by an external radiation flux 
(case b) are shown. Although the magnitudes of the 
three amplitudes do not differ from each other as 
much as in case (a), the exchange of roles between 
solutions II and III still appears. Contrary to 
case (a) the radiation field has now a strong 
influence also on the amplitude of the weakly 
damped thermoconvective wave (solution I). The 
results show that also a ~riodi~alIy changing 
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FIG. 5. Temperature amplitude according to periodically 
changing external radiation flux; boundary conditions (26), 
with gi = CljcTf/Qo (j = I, II, III), and at E = 0.1 and 

H= 1. 

radiation flux can give rise to thermoconvective 

waves simultaneously propagated with a radiation- 
induced wave. The amplitudes of the three waves, 
without account of the damping, are approximately 
of the same order of magnitude. 

4. APPLICATION OF RAY METHODS 
TO THE CASE OF A NONLINEAR 

TEMPERATURE PROFILE 

After the study of the interaction between thermo- 
convective waves and a radiation-induced wave by 
means of the plane wave model we turn now to the 
second important radiative effect, the nonlinear 
temperature distribution in the undisturbed basic 
state. Due to the varying temperature gradient the 
phase velocity is no longer constant and the surfaces 
of constant phase will no longer be plane. We have 
to show now whether we can replace the plane wave 
model by the methods of the ray theory (also called 
“geometrical acoustics” [19] or “geometrical optics” 

[2421-J.) 
The ray theory can only be applied if the 

characteristic length for changes of the phase velocity 
is large compared to a wave length. Considering 
especially a horizontal layer with a nonlinear 
temperature profile as in Fig. I we can regard the 
thickness b to be the characteristic length of 
significant changes of the basic state. The wave 
length of the weakly damped thermoconvective wave 
is small compared to the thickness b if we choose the 
value of the Rayleigh-number only a little smaller 
than the critical Rayleigh-number, cf. equation (21). 
This relationship remains valid also in the presence 
of radiation, because we have shown in the previous 
section that the wave number of the weakly damped 
thermoconvective wave retains its order of magni- 
tude even at strong radiation. Under these circum- 
stances it is justified to describe the propagation of 
the weakly damped thermoconvective wave in terms 
of the ray theory. 

We consider again the two-dimensional problem 
and start from the equations @-(I 1) with a variable 
coefficient ;lO(y) in the energy equation (10) cor- 
responding to the nonlinear temperature distri- 
bution, cf. also (12). It is advantageous to reduce the 

system (8)(11) to a single differential equation for 
the ll-component of the velocity. Introducing further 
a formulation of the kind 

i; = 9(X, j) eSi’, (27) 

with 

.w = x/b, _P = y,fb, i= WC, 

finatly leads to the following differential equation 
with respect to X and ji: 

@M&lTicp - YOti)PE] 

-72[~~~~~~-~~(~)~~~] = 0, (28a) 

with 

D, = _jE-__ AK2 ’ 
i A 

(28b) 

T = J%b, 

K = ~--AA c 1 1’4b __ 1 

KY 

The parameter E is again the ratio of frequency m to 
N, cf. IlSb), and in $, the variable temperature 
gradient yO~) is related to its constant counterpart 
$ in the case of vanishing radiation. 

Together with (17), (18b) and (21) we identify the 
parameter K as the ratio between the thickness of 
the layer b and the reciprocal real wave number of 
the weakly damped thermoconvective wave in the 
limit E --$ 0. Thus we obtain 

(29) 

at large Rayleigh-numbers that are necessary for 
weakly damped thermoconvective waves. With con- 
dition (29) satisfied we may find now solutions of 

equation (28a) by means of the formulation of the 
ray theory, cf. e.g. [ZO, p. 3743 

cp = eiKx(“si) 2 (jK)-“‘&(x,j?). 
BY=* 

(30) 

With the introduction of the eikonal x(X,j) the phase 
.P takes now the form 

.?p = K&x,j)-wt, (31) 

and the lines of constant phase in the 2, y-plane are 
given by x = const. Hence the phase velocity C can 
be written as 
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with 
(ox)* = xf +x$, 

cf. [20, p. 2411. For the amplitude, a formulation in 

terms of a regular expansion for large values of the 
parameter K is assumed, cf. (30). When this 
expansion in the form (30) is introduced into 
equation (28a), then the lowest order terms with 
respect to Km1 result in a partial differential 
equation for x, the eikonal equation. Herein further 
simplifications are possible. At first we can exclude 
the case of large optical thickness because the 
temperature gradient would then be nearly constant 
and there would have been no need to replace the 
plane wave model by ray theory methods. If we 

further exclude the case of dominating radiation and 
assume 

H7' 

1+72 
- O(1) C P, 

then any radiative influence in the eikonal equation 
vanishes except as the variable temperature gradient 
To (ji) is concerned 

(OX)2[-ic+JPr(vX)2] L -is+1 - 
Jpr (vx) 2 I 
-Y&)X; = 0. (34) 

Now exactly those terms are dropped that give rise 
to the radiation-induced wave in the plane wave 
model. This is due to the fact that the wave length of 
the radiation-induced wave is large compared to that 
of the weakly damped thermoconvective wave (Figs. 
2 and 3) and that the long-wave modes are ignored 
in the context of the ray theory approximation. 

In analogy to the dispersion relation we adopt 
now the asymptotic expansion 

X=Xo+sX,+..., (a << l), (35) 

for small values of the frequency parameter E and 
obtain 

CxaP+xl,-l”-yo(j)X~~ = 0. (36) 

This nonlinear first order partial differential equation 

which is no longer complex as is the former eikonal 
equation (34) is solved by introducing a characteris- 
tic ray coordinate 5. The rays that can be regarded 
as the lines along which the wave energy propagates 
are then given in the z?, j-plane as a function of 5: 
x = x(t). We omit the details that can be found in 
[2] and shall concentrate on the main results. 

The geometry of the wave propagation is de- 
scribed by the angle 9, between the ray tangent and 
the x-axis and the angle 9, between the phase 
normal (identical with the direction at the phase 
velocity) and the x-axis, cf. Fig. 6. In the classical 
isotropic case, e.g. a sound wave propagating in a 
motionless medium, the two angles 9, and 9, are 
identical. As thermoconvective waves are concerned 
the solution of the eikonal equation yields 

tan 9, = tan 9, 
3 co? 9, 

3cos29P-1. 
(37) 

ray-tangent 

Y 

ti 

phase-normal 

my 
line of constant phise 
x = const. 

X 

FIG. 6. The picture of a ray and a line of constant phase 
together with their inclination angles in the case of an 
anisotropic wave propagation in an inhomogeneous 

medium. 

Except for the case 9, = 9, = 0 the angle of the ray 

direction 9, is always larger than the angle of the 
phase normal 9,, as it is indicated in Fig. 6. Such an 
anisotropy had to be expected already according to 
the fact that the differentiation in the eikonal 
equation (36) is not symmetrical with respect to X 
and j. Furthermore we have to expect curvilinear 
rays as well as curvilinear lines of constant phase 
according to the variable coefficient y,,(j) in the 
eikonal equation. One of the main results is a 
relationship that determines the curvature of the 

rays 

with 

$ (tan QP) = xoi ‘$, 

d& - 0, 
d5 

(38) 

As xoi is constant along the rays equation (38) 
means the following: The angle of inclination of the 
phase velocity changes along the rays proportional 
to the local value of the second derivative of the 
temperature profile. 

FIG. 7. Development of the ray curvature of thermoconvec- 
tive waves at a distribution of the temperature gradient l/e 

corresponding to a conducting and radiating fluid layer. 

In a conducting and radiating layer with a 
distribution of the temperature gradient Toti) as in 
Fig. 7 we have 

d?o 
- > 0, 
dy 

at j > 0, 

d% 
- = 0, 
dy 

at j = 0, 

d?o 
- < 0, 
dy 

at j < 0. 
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Hence initially horizontal rays are bent upwards in 
the upper half of the iayer and downwards in the 
lower half of the layer (see Fig. 7). The ray in the 
middle of the layer as well as the corresponding 

phase normal remain always in the horizontal 
direction. The diverging behaviour of the rays leads 

to an attenuation of the amplitude in ray direction; 
we can also conclude that the phenomenon of a 
caustic will not occur at least as far as ray reflections 
from the walls are left out of consideration. 

To obtain more accurate quantitative results for 
the amplitudes at a certain distance away from the 

oscillating source we would not only have to take 
into account the reflected rays but also the higher 
order solutions of the eikonal equation (34) with 
respect to c as well as higher order solutions of 

equation (2Xa) with respect to K-‘, thus supplying 
so-called transport equations. We would then have 
to superpose the effects of attenuation of the 
amplitudes due to the diverging of neighbouring rays 
and the dissipative damping of the waves. 

On the other hand we can state that the results of 
the first order ray-approximation have been derived 
irrespective of the fact that the nonlinear tempera- 
ture distribution had originally been a consequence 
of radiation. The above results, especially the 

solutions (37) and (38) of the eikonal equation (36), 
are valid whether the variable temperature gradient 
is produced by a radiation field or any other 
nonlinear physical mechanism. 

5. SUMMARY 

The results of the investigation 
convective waves under the influence 
can be summarized as follows: 

of thermo- 
of radiation 

(i) Radiation-induced waves can only adopt finite 
values of wave length and phase velocity when they 
are coupled with some other types of waves where 

tem~rature ~rturbations occur, e.g. thermoconvec- 
tive waves. The properties of the radiation-indllced 

waves depend therefore to a great extent on the 
properties of the waves they are interacting with. The 
example of thermoconvective waves has shown that 
the simultaneous propagation of different kinds of 
coupled waves in a radiation field does not give rise 
to different kinds of radiation-induced waves but 
yields only one single radiation-induced wave. 

(ii) Under the assumption of one-dimensional 
plane harmonic waves a bicubic dispersion equation 
for the complex wave-number E is derived. The 
solutions for the reciprocal real wave number (&)-I 
and the damping constant 6 are shown as functions 
of the Bouguer-number Bu (cf. Figs. 2 and 3). The 
solution that corresponds to the strongly damped 
mode of thermoconvective waves at Bu CC 1 con- 
tinues as the solution of the radiation-induce wave 
at Bzg >> 1 and vice versa. Such a changing of parts 
between two solutions that occurs here at any finite 
value of the conduction-radiation parameter N has 

been observed previously in the case of interacting 
ordinary thermal and radiation-induced waves, but 
there only at values H > 1. One can say that 
concerning the interaction with a radiation-induced 
wave the weakly damped mode of thermoconvective 
waves behaves like the ordinary thermal wave at 
H CC 1 (weak radiation) whereas the strongly dam- 
ped mode of thei~oconvective waves behaves like 
the ordinary thermal wave at H >> 1 (strong 
radiation). It is shown that the wave number of the 

weakly damped mode of thermoconvective waves, in 
contrary to the two other solutions, is only weakly 
modified by even a strong radiation field. 

Furthermore the amplitudes of the three waves 
immediately at the wail where the perturbations are 
induced (i.e. at x = 0) are evaluated for two different 
boundary conditions (cf. Figs. 4 and 5). The results 
show that the greatest relative importance of the 
radiation-induced wave is approximately in the 
region 10-l < Bu < 1; there the amplitude as well as 
the damping reach values of about the same order of 
magnitude as for the thermoconvective waves. 

(iii) The influence of radiation on thermoconvec- 
tive waves manifests itself not only in the interaction 
with a radiation-induced wave, but also by way of a 

nonlinear temperature distribution in the undis- 
turbed basic state. Only in the case of weak radiation or 
large optical thickness the nonlinearity of the 
temperature profile inay be neglected so that a 
formulation in terms of plane waves is justified. In all 
the other cases one has to take account of a variable 
tem~rature gradient in the basic state and treat a 
system of differential equations with a variabie 
coefficient. It is shown that the wave length of the 
weakly damped thermoconvective wave is small 
compared to the length of considerably large changes 
of the temperature gradient. Hence the condition for 
the application of the ray theory is satisfied. 

The derived eikonal equation that describes the 
shape of the rays along which the wave energy 
propagates shows that we have to deal with an 
anisotropic wave propagation. The angle between 
the ray tangent and the horizontal \--axis is always 
larger than the angle between the phase normal and 
the .u-axis. Furthermore the rays are bent towards 
increasing temperature gradients whereby the change 
in the direction of the phase velocity along the rays is 
proportional to the local second derivative of the 

temperature profile. 
These results are inde~ndent of the fact that in 

our case the variable temperature gradient is due to 
radiation, and they apply whenever thermoconvec- 
tive waves propagate in a stratified fluid with a 
nonlinear temperature distribution. 
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ONDES THERMOCONVECTIVES DANS UN FLUIDE CONDUCTEUR ET RAYONNANT 

R&urn&On considire l’influence du rayonnement thermique sur la propagation d’ondes thermoconvec- 
tives dans un fluide chauffk par le bas. Le champ radiatif est dtcrit au moyen de l’approximation 
diffkrentielle. L’kquation de dispersion qui est obtenue pour des ondes harmoniques, planes, B 
propagation horizontale, a trois solutions diffkrentes: 

En plus des deux modes d’ondes thermoconvectives, on obtient une onde de type induit par 
rayonnement avec des in&actions intiressantes. Si le champ radiatif conduit a une distribution de 
tempkrature fortement non Jinkaire dans 1’8tat fondamental non perturb& la propagation des ondes 

thermoconvectives faiblement amorties est d&rite en terme de thiorie du rayon. 

THERMOKONVEKTIVE WELLEN IN EINEM LEITENDEN UND STRAHL~NDEN FLUID 

Zusammenfassung-Die Untersuchungen behandeln den EinfluR von WgrmestrahIung auf die Aus- 
breitung thermokonvektiver Wellen in einem von unten beheizten Fluid. Das Strahlungsfefd wird 
beschrieben durch die Gleichungen der Differentialapproximation. Fiir horizontal fortschreitende, ebene, 
harmonische Wellen wird eine Dispersionsgleichung abgeleitet, aus der man drei verschiedene Lijsungen 
erhllt: Neben den zwei thermokonvektiven Wellen tritt such eine sogenannte strahlungsinduzierte Welle 
auf, wobei interessante Wechselwirkungen festzustellen sind. Fiihrt das Strahlungsfeld zu einer stark 
nichtlinearen Temperaturverteilung im ruhenden Grundzustand, so wird die Ausbreitung der schwach 

gedampften thermokonvektiven Welle mit Hilfe einer Strahltheorie beschrieben. 

TEPMOKOHBEKTHBHbIE BOJlHbl B nPOBO~~~E~ M ~3nY~A~qE~ XMitKOCTM 

AHHOT~UH~ ~~ npoaeiteno ~cc,~e~oaaH~e B~WSIH~ rennoBoro tt3nyreHm tfa pacn~ocT~HeH~e TepMo- 

K~HBeKT~BHbiX BO>fttt B HarpBaeMO$i CHtiSy WCWKOCTII. none H3RyWHHI OFtWCbfBaeTCfCR c FtOMOUlbtO 

nwqHpepettutfanbtfor0 np~6nMmewMs. ,QucnepcHomioe ypaeeeiree. BbIBeReHHOe am 0nticaHtitt ropw 

‘3OHTaJlbHO ,,aCttpOCTpL,H,,tOulHXC,, WIWKHX CHHyCOHlla,tbHbtX BO,lH. HMWT TPH pt%IeHti% B nO”On- 

HeHt,e K L,ByM MOLlaM TepMOKOHBeKTHBHblX BOJtH nO,tyVeH et”6 OaMH Tlln BO.lHbI. Bbl3Ba~‘HOii 
tfmyseHtteM. B pe3yjlbTaTe zero MoXtio HaGntonaTb MX ssauMo;leiicTtuie. Ecnrt H3nyseHMe cosna&T 
CyW2CTBeHHO HeJltiHefiHOe paCtlpeJlWleHtie TeMnepaTypbI B HeB03MyUleHHOM OCHOBHOM COCTORHHM. 

TOrRa pdCnpOCTpaHeHH‘2 C>ltiliO 3aTyXEltOultiX Te,WtOKOHBeKTWBHblX BOJIH MOW(H0 O”HCaTb B np~6ne- 


